We can get 100 units into Australia from Adafruit. If you order today, we can dispatch this stock between Nov 29, 2024 - Dec 02, 2024.
Add some sizzle to your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection and a capacitive touchscreen. This TFT display is big (2.8" diagonal) bright (4 white-LED backlight) and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. It has way more resolution than a black and white 128x64 display. As a bonus, this display has a capacitive touchscreen attached to it already, so you can detect finger presses anywhere on the screen.
This shield is the capacitive version as opposed to the resistive touchscreen we also sell. This touchscreen doesn't require pressing down on the screen with a stylus, and has a nice glossy glass cover. It is a single-touch display.
This shield uses SPI for the display and SD card and is easier to use with UNO, Mega & Leonardo Arduino's. The capacitive touchscreen controller uses I2C but you can share the I2C bus with other I2C devices.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you'll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Duemilanove/Diecimila). Solder three jumpers and you can use it at full speed on a Leonardo or Mega as well.
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. This shield needs fewer pins than our v1 shield, so you can connect more sensors, buttons and LEDs: 5 SPI pins for the display, 2 shared I2C pins for the touchscreen controller and another pin for uSD card if you want to read images off of it.
Of course, we wouldn't just leave you with a datasheet and a "good luck!" - we've written a full open source graphics library that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x & y location and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!