7.5V, 2.6A Step-Down Voltage Regulator D36V28F7

via Pololu
$30.33
SKU PL-3784

The D36V28Fx family of buck (step-down) voltage regulators generates lower output voltages from input voltages as high as 50 V. They are switching regulators (also called switched-mode power supplies (SMPS) or DC-to-DC converters), which makes them much more efficient than linear voltage regulators, especially when the difference between the input and output voltage is large. These regulators can typically support continuous output currents between 2 A and 4 A, depending on the input voltage and output voltage (see the Maximum continuous output current section below). In general, the available output current is a little higher for the lower-voltage versions than it is for the higher-voltage versions, and it decreases as the input voltage increases.

This family includes six versions with fixed output voltages ranging from 3.3 V to 12 V:

  • D36V28F3: Fixed 3.3V output
  • D36V28F5: Fixed 5V output
  • D36V28F6: Fixed 6V output
  • D36V28F7: Fixed 7.5V output
  • D36V28F9: Fixed 9V output
  • D36V28F12: Fixed 12V output

The regulators have reverse voltage protection up to 40 V, output undervoltage and overvoltage protection, over-current protection, and short-circuit protection. A thermal shutdown feature also helps prevent damage from overheating and a soft-start feature limits the inrush current and gradually ramps the output voltage on startup.

We manufacture these boards in-house at our Las Vegas facility, which gives us the flexibility to make these regulators with customized components to better meet the needs of your project. For example, if you have an application where the input voltage will always be below 20 V and efficiency is very important, we can make these regulators a bit more efficient at high loads by replacing the 40V reverse voltage protection MOSFET with a 20V one. We can also customize the output voltage. If you are interested in customization, please contact us.

Details for item #3784

Features

  • Input voltage: 8 V to 50 V (minimum input subject to dropout voltage considerations; see the dropout voltage section for details)
  • Output voltage: 7.5 V with 4% accuracy
  • Typical maximum continuous output current: 2 A to 3.7 A (see the maximum continuous output current graph below)
  • Typical efficiency of 85% to 95%, depending on input voltage, output voltage, and load (see the efficiency graph below)
  • Switching frequency: ~500 kHz under heavy loads
  • Power-save mode with ultrasonic operation that increases light load efficiency by reducing switching frequency, but keeps it above the audible range (20 kHz)
  • 2 mA to 3 mA typical no-load quiescent current (see the quiescent current graph below)
  • Enable input for disconnecting the load and putting the regulator into a low-power state that draws approximately 10 µA to 20 µA per volt on VIN
  • “Power good” output indicates when the regulator cannot adequately maintain the output voltage
  • Output undervoltage and overvoltage protection
  • Soft-start feature limits inrush current and gradually ramps output voltage
  • Integrated reverse-voltage protection up to 40 V, over-current and short-circuit protection, over-temperature shutoff
  • Compact size: 0.7″ × 0.8″ × 0.345″ (17.8 mm × 20.3 mm × 8.8 mm)
  • Two 0.086″ mounting holes for #2 or M2 screws

Connections

This regulator has six connections: power good (PG), enable (EN), input voltage (VIN), output voltage (VOUT), and two ground (GND) connections.

The “power good” indicator, PG, is an open-drain output that goes low when the regulator’s output voltage either rises more than 20% above or falls more than 10% below the nominal voltage (with hysteresis). An external pull-up resistor is required to use this pin.

The EN pin is pulled-up to reverse-protected VIN by a 100 kΩ resistor, which enables the regulator’s output by default. The EN pin can be driven low (under 0.4 V) to put the board into a low-power state. The quiescent current draw in this sleep mode is dominated by the current in the pull-up resistor from EN to VIN and by the reverse-voltage protection circuit, which altogether will draw between 10 µA and 20 µA per volt on VIN when EN is held low. If you do not need this feature, you can leave the EN pin disconnected.

The input voltage, VIN, powers the regulator. Voltages up to 50 V can be applied to VIN. Generally, the effective lower limit of VIN is VOUT plus the regulator’s dropout voltage, which varies approximately linearly with the load (see below for graphs of the dropout voltage as a function of the load).

VOUT is the regulated output voltage.

The six connections are arranged on 0.1″ grid for compatibility with solderless breadboards, connectors, and other prototyping arrangements that use a 0.1″ grid. The PG connection is the only one not located along the edge of the board. A 6×1 straight male header strip and a 5×1 right-angle male header strip are is included with the regulator; one pin of the straight header can optionally be broken off and soldered into PG.

Typical efficiency

The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns.

Maximum continuous output current

The maximum achievable output current of these regulators varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows maximum output currents that these regulators can deliver continuously at room temperature in still air and without additional heat sinking.

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

Quiescent current

The quiescent current is the current the regulator uses just to power itself, and the graph below shows this for the different regulator versions as a function of the input voltage. The module’s EN input can be driven low to put the board into a low-power state where it typically draws between 10 µA and 20 µA per volt on VIN.

Typical dropout voltage

The dropout voltage of a step-down regulator is the minimum amount by which the input voltage must exceed the regulator’s target output voltage in order to ensure the target output can be achieved. For example, if a 5 V regulator has a 1 V dropout voltage, the input must be at least 6 V to ensure the output is the full 5 V. Generally speaking, the dropout voltage increases as the output current increases.